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A plastic-strain mechanism has been suggested [i, 2] which involves intermediate slip 
areas [3]. This mechanism provides work-hardening equations for any form of loading in which 
the principal directions in the stress tensor are unchanged, and it is sufficient for the 
purpose to know the work-hardening law for axial tension. 

Here we report experiments in which loading of biaxial tension type has been used with 
tubular specimens of 40Kh steel subject to internal pressure and axial forces. The princi- 
pal directions in the stress tensor remain at rest within the body, although the loading is 
substantially different from proportional. 

w Consider the state of stress in an element having immobile principal directions 
for the stress tensor (1-3) in Fig. i; let the inequalities 

~i ~ a2 ~ ~ (l.1) 

be met without reenumeration; the origin of the auxiliary coordinate system (n~, na, na) is 
located on the surface of unit sphere described around the element. The slip area ~a~ is the 
area having normal na and direction n: in it. The tangential stress ~, on this area (~, 8, 
~) takes the following form (Fig. i): 

�9 (y2 . ~r~ cos  ~ �9 s i n  2 q ) / -  ~ ( s i n  2 a  s i n  ~ �9 cos  ~p -- s i n  ~ cr �9 cos  ~ �9 s i n  2q~)-- ~31 ~ T  

23 (sin 2a �9 sin ~ �9 cos ~ + cos ~ ~ �9 cos ~ sin 2~). 

The principal slip areas T = (o, -- o3)/2, T12 = (~i -- 0=)/2, T23 = (02 -- oa)/2 are ac- 
companied by the following intermediate areas [3]: 

= O; r = ~ /4 ;  ~r = • ~ !4 ,  = = _+ 3n/4, ( i . 2 )  

on which there is the tangential stress T'~2 = (T + T~2)/2; if axes i and 3 are interchanged 
v 2 t in Fig. i, the slip areas of (1.2) are subject to the tangential stress -~aa, where T2~ = 

T + T2a, and it is clear that 

If axes i and 2 are interchanged, we get the tangential stress T'~ = (T2~ --T~a)/2 on the 
slip areas of (1.2). 

A deformation mechanism has been described [3] in which the plastic strain is represented 
as a sequence of shears on the slip areas T, T,2, T23 [i, 2] and T'2, T~'a, T'I; the sides 
of the regular hexagons in the deviator plane in Fig. 2a relate to the lines Tij - const = 
T L (i < j), wherez L is the yieldpoint inshear. Condition (I.I)defines regionA~ inwhich T L is 
attained only on the slip areas T, T,2, T2a, T~2, T~a in response to actual loads. For this 
area we adopt assumption I on the independence of the T, T:=, T2a, T~2, T='a slip areas: the 
total plastic shear ~f on the slip areas corresponding to a given tangential stress is depen- 
dent only on the maximum value: 

V. = F (r~j), {~ : r (r~j), (1.3) 

where F is the standard relationship for the material. This allows us to sum the contribu- 
tions from the different areas to the plastic strain, for the work of plastic strain AP done 

T' is given by (1.3) as having the increment by the tangential stresses T, T,2, T23, T'2, 23 
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AA p = TF'  ( r )  AT + rl~.[" (TI=) AT~ + . . .  + T2~F' (T23) AT23, (1 .4 )  

where F'(Tij) = dF(Tii)/dTij ; if the variable Tij , and T~i are the maximum attainable values 
(not the current values of the tangential stresses), they~are not dependent, and the value 
of AAP in the form of (1.4) is the total differential in terms of these variables, while AP 
itself is not dependent on the mode of loading on passing from one state of strain to another. 
To calculate AP we used a stepwise loading path in (1.4), in which the slip areas were suc- 
cessively activated. The increments in the plastic strains A~P (~ = I, 2, 3) were derived 
as the corresponding coefficients to oe in (1.4): 

[ ~  F' ( r ~ ) A T e . +  F' (T12)AT12-~ -F'(T23) AT23] "-4- hA p = a~ AT + 2 - - - - T - -  4 

, r '  l 
" [ ~  2 4 4 ] 

which shows that the contributions from the slip areas add up. 

In order to determine F(T) it is sufficient to know the work-hardening law eP (~,) for 
axial stretching; in fact, we have T - T,2 -- T'2, T'23 < T L, T23 = 0 for this form of loading, 
so (1.5) gives us 

As~(T) 3AT f '  = - 5 -  (r) ,  

whence we get 
2 8p (T). F(T)  --~ y 

(i .6) 

We now consider loading with immobile principal directions for the stress tensor but 
with the restrictions of (i.i) eliminated; then plastic shear can occur on six slip areas 
(or 12 areas in Fig. 2a if the sign of the tangential stress is incorporated). In that case, 
we make assumption II, which governs the slip areas: the slip areas • are not dependent 
in the sense of (1.3), while hardening on one such area may cause various degrees of soften- 

! 
ing on the slip areas Tqp related to two sides of the external hexagon opposite the given 
side. Figure 2b shows the projection of the loading surface on the deviator plane for load- 
ing path OA. Hardening on slip area T causes softening on the areas related to sides BC and 
BD. The new sides B~C~, and B,D~ correspond to the tangential stress rL,: 

TL1 = T5 --  (T O -- TL), (1 .7)  

where T ~ is the maximum value of T. 

Assumption II resembles assumption I in allowing us to sum the contributions from the 
various slip areas to the plastic strain. 

We now consider how the slip areas vary when the loading path goes from region A to 
region B in Fig. 2a; in the latter case, o= > ~ > ~a, because the slip areas Ta~ = (02 -- 
0,)/2, T~I = (T23 + T21)/2 are activated. If T~2 > T L in region A, then (1.7) indicates 
that the additional contributions to the increment in the plastic strain are 
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If Ta~ > r L in region B, then we have to replace F'(T'a) by FT(TIa + Ta~ -- r L) in (I.5) 
on returning to region A, where Taa and T:a in (1.8) are the maximum attainable values for 
the corresponding tangential stresses. 

Figure 2b illustrates the behavior of (1.5) and (1.8) by means of loading surfaces, and 
it is clear that these equations describe the combined hardening involving coupled planar 
loading surfaces [4], 

w We now compare these results with experiments in which the loading was of biaxial 
tension type in thin-walled tubes made of 40Kh steel subject to internal pressure and axial 
forces. 
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The specimens were hollow cylinders of wall thickness ~ = i mm in the working part and 
average radius R = 15 mm; the differences in wall thickness did not exceed • mm. The 
specimens were heat treated at 800~ and 10 -4 mm Hg for 2.5 h; this was sufficient to produce 
a definite yield range. 

The strain was measured with strain gauges and dial gauges, the latter being used for 
the longitudinal strain over a baseline of i00 mm, the dial gauge having a scale division of 
0.01 mm, while devices of micron sensitivity were used for the transverse strain. The radial 
strain was deduced from the volume change calculated from Hooke's law. The radial stress 
was taken as zero. The effects of creep were eliminated by making the measurement at each 
stage in the strain after a delay of 5 min. 

Figures 3-5 show the measurements (open circles) and the calculations (filled circles). 
These specimens had initial anisotropy: qz # 0, TLI = 23 kg/mm 2 in axial tension, ~ # 0, 
TLa = 20 kg/mm 2 in circumferential tension, and ~z E ~ ~ 0, TL3 = 22 kg/mm 2 in uniform 
biaxial tension. The calcu%ations shown in Fig. 3b and Fig. 4b were based on TL = 23 kg/ 

2 
mm for the slip areas T, TI~, T~2, T~ and T L = 20 kf/mm 2 for the slip areas T23 , T21, 
T~I (the values for T L on the slip areas are interchanged for the calculation of Fig. 5b). 

The F(T) defined from (1.6) for the axial-tension experiments is given for integer T 
in Table I. 

The calculations were performed as follows. At each stage of loading, starting from 
the yield range, we calculated Tij and T~j, which were compared with TL and TL~ in the form 
of (1.7). As each slip area was activated, we calculated the increments in the plastic 
strains in accordance with (1.5) and (1.8) where the term F'(Ti.)AT i- was replacedby F(Tij + 

' 3 3 
ATij) -- F(Tij), while the values for F for noninteger Tij were determined from the adjacent 
integer values by interpolation. This calculation is conveniently performed by computer. 

Figures 3a and 4a show the loading paths ABCD and ABCDE in region A: up to point A, 
there is uniform biaxial extension, while on part AB only one slip area T is active, i.e., 
T > TL and AT > 0, so (1.5) indicates elastic variation in e2, i.e., Ac~ = 0. 
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TABLE I 

T, kg/mT--mZ T, kg/mm z F(T).103 F(T).~0~ kg/mm2 

23 
24 
25 
26 
27 
28 

~176 0,25 30 
0,58 3i 
0,96 32 
i,38 33 
t,83 34 

2,31 
2,8i 
3,34 
3,98 

'4,77 
5,76 

35 
36 
37 
38 

Here we should note that the component of the stress deviator o~ = o~ > 0 at point A, 
so Mises' theory indicates that there is plastic change in ~2 (with Ae~ > 0), which con- 
flicts with experiment. 

Figure 5a shows the loading path OABOCD as emerging from region A and passing to region 
B and vice versa. The softening on the slip areas T~: and T~2 was examined in terms of Tat 
plotted on the right in Fig. 5b, for the loading sections ABO and PD, and also the value of 
T~2 for the loading section OCP, the relevant point here being which slip area was activated 
(the elastic changes in ~: and s2 cease when these areas are activated). We see from (1.5) 
and (1.8) that slip area T~ is activated at 16 kg/mm 2 (point K) in the first cycle and at 
14 kg/mm 2 (point P) in the second one. Similarly, area T~2 is activated at 16 kg/mm 2 (point 
N). 

Therefore, Figs. 3-5 show satisfactory agreement between the calculations and experi- 
ment on loading with immobile principal directions for the stress tensor. 

We are indebted to E. I. Shemyakin for valuable comments. 
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